Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sintering of Chitosan and Chitosan Composites

Authors: Cynthia Brysch; Eric Wold; Francisco C. Robles Hernandez; John F. Eberth;

Sintering of Chitosan and Chitosan Composites

Abstract

Chitosan is a naturally-occurring polymer that is derived through the deacetylation of chitin. Chitin, found in the exoskeletons of invertebrates, is ubiquitous in nature and easily collected as waste and repurposed for a multitude of industrial and biomedical applications. Development of composites of chitosan and carbon are attractive due to their availability, compatibility, and mechanical properties. In the present work we construct a chitosan composite reinforced with 2 wt% carbon nanostructures using mechanical milling. The carbon nanostructures consist of amorphous carbon, graphene-like, and graphitic nanostructures synthesized by mechanical exfoliation. We demonstrate that the mechanical properties of this composite material can be altered by varying the sintering conditions. Preliminary thermal analysis showed a degradation temperature around 220 ± 5 °C but this was also influenced by the duration of temperature exposure. The material was strengthened by adding carbon nano-composites and through sintering. Better sintering conditions occurred at lower temperatures and shorter times. The new material properties are characterized by means of mechanical testing, electron microscopy, Raman spectroscopy, and X-ray diffraction.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!