Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.reposito...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2020
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2020
Data sources: Apollo
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Turbomachinery
Article . 2020 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
https://doi.org/10.1115/gt2019...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Loss in Axial Compressor Bleed Systems

Authors: Grimshaw, SD; Brind, J; Pullan, G; Seki, R;

Loss in Axial Compressor Bleed Systems

Abstract

Abstract Loss in axial compressor bleed systems is quantified, and the loss mechanisms identified, in order to determine how efficiency can be improved. For a given bleed air pressure requirement, reducing bleed system loss allows air to be bled from further upstream in the compressor, with benefits for the thermodynamic cycle. A definition of isentropic efficiency which includes bleed flow is used to account for this. Two cases with similar bleed systems are studied: a low-speed, single-stage research compressor and a large industrial gas turbine high-pressure compressor. A new method for characterising bleed system loss is introduced, using research compressor test results as a demonstration case. A loss coefficient is defined for a control volume including only flow passing through the bleed system. The coefficient takes a measured value of 95% bleed system inlet dynamic head, and is shown to be a weak function of compressor operating point and bleed rate, varying by ±2.2% over all tested conditions. This loss coefficient is the correct non-dimensional metric for quantifying and comparing bleed system performance. Computations of the research compressor and industrial gas turbine compressor identify the loss mechanisms in the bleed system flow. In both cases, approximately two-thirds of total loss is due to shearing of a high-velocity jet at the rear face of the bleed slot, one quarter is due to mixing in the plenum chamber and the remainder occurs in the off-take duct. Therefore, the main objective of a designer should be to diffuse the flow within the bleed slot. A redesigned bleed slot geometry is presented that achieves this objective and reduces the loss coefficient by 31%.

Country
United Kingdom
Keywords

compressor, fluid dynamics and heat transfer phenomena in compressor and turbine components of gas turbine engines, computational fluid dynamics (CFD), measurement techniques, and turbine aerodynamic design

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
bronze