Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decreasing Bladed Disk Response With Dampers on a Few Blades: Part II—Nonlinear and Blade-Blade Dampers Applications

Authors: Raghavendra Murthy; Marc P. Mignolet;

Decreasing Bladed Disk Response With Dampers on a Few Blades: Part II—Nonlinear and Blade-Blade Dampers Applications

Abstract

This two part paper focuses on the optimum placement of a limited number of dampers, i.e. fewer than the number of blades, on a bladed disk to induce the smallest possible amplitude of blade response with or without involuntary, random mistuning. Intentional mistuning is also considered as an option to reduce the amplitude of blade response and the pattern of two blade types (referred to as A and B blades) is then part of the optimization effort in addition to the location of the dampers on the disk. This second part of the investigation focuses on the application of the optimization algorithms developed in Part I to nonlinear dampers, more specifically friction dampers, as well as to the consideration of blade-blade dampers, linear or nonlinear (underplatform dampers). Additionally, the optimization of blade-only and blade-blade linear dampers will be extended to include uncertainty/variability in the damper properties that arise during the manufacturing and/or inservice. It is found that the optimum achieved without considering such uncertainty/variability is robust with respect to it.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?