
A new and efficient form of Featherstone’s multibody Divide and Conquer Algorithm (DCA) is presented. The DCA was the first algorithm to achieve theoretically optimal logarithmic time complexity with a theoretical minimum of parallel computer resources for general problems of multibody dynamics, however the DCA is extremely inefficient in the presence of small to modest parallel computers. The new efficient DCA approach (DCAe) demonstrates that large DCA subsystems can be constructed using fast sequential techniques and realize substantial speed increases in the presence of as few as two parallel processors. Previously the DCA was a tool intended for a future generation of parallel computers, this enhanced version promises practical and competitive performance with the parallel computers of today.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
