
This paper discusses mechanisms that allow for perfect static balancing of rotations about a fixed spherical joint by means of ideal springs. Using a potential energy consideration, balancing conditions of a spatial three-spring balancer will be derived. It will be shown that not satisfying these conditions causes non-constant terms in the potential energy expression of the spring-mechanism, which can be eliminated by coupling the spring-mechanism to an inverted pendulum.
Gravity equilibrator, Rehabilitation technology, Rolling link mechanisms, Spatial, Static balance
Gravity equilibrator, Rehabilitation technology, Rolling link mechanisms, Spatial, Static balance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
