
Abstract In recent years, cluster analysis has played an increasingly important role in statistical pattern recognition. Hoeltzel and Chieng have shown an example on cognitive selection of nonlinear programming algorithms in a mechanical design expert system. In this paper, an improved dynamic clustering of 3000 samples came from a comparative performance evaluation of six typical nonlinear programming softwares with randomly generated test problems has been made. Explanations resulting from the cluster analysis have been used to build rules to form the knowledge base of an optimization expert system.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
