Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thermal S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Science and Engineering Applications
Article . 2020 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Magnetohydrodynamic and Heat Transfer Impacts on Ferrofluid Over a Rotating Disk: An Application to Hard Disk Drives

Authors: Peri K. Kameswaran; V. Loganayagi;

Magnetohydrodynamic and Heat Transfer Impacts on Ferrofluid Over a Rotating Disk: An Application to Hard Disk Drives

Abstract

Abstract The motivation behind this article is to explore the impacts of heat transfer, magnetohydrodynamic, and hall current on two-dimensional incompressible nanofluid flow over a rotating disk. The nanofluid model utilized in the present investigation comprises the nanoparticle fraction model. Two sorts of nanoparticles to be specific Hematite (Fe2O3) is the principal source of iron and Cobalt alloy (Co64 Cr30 W6) is generally used metal alloy that is primarily Cobalt and Chromium with base fluid Motor Oil 10W30 is taken into consideration. The Prandtl number identifying with motor oil is (Pr = 1531.92). The governing equations are reduced to a system of ordinary differential equations by using Von-Karman transformation and then solved numerically utilizing matlab bvp4c. Impacts of the magnetic field, hall current, and nanoparticle volume fraction on tangential, radial velocities, and temperature profiles have been examined. Numerical outcomes have been acquired for various physical parameters through graphical representation. We have demonstrated that a remarkable reconciliation exists among the current outcomes and those in the literature for various values of magnetic parameter and velocity slip parameters, in the absence of other parameters. It is also found that radial and tangential velocities increase more in the case of Fe2O3 nanoparticles when compared with Co64 Cr30 W6 because of density variations. It is discovered that enhancement in a nanoparticle volume fraction reduces the heat transfer rate. It can moreover be clarified such a way that as the nanoparticle volume fraction raise, the density of nanoparticles increases, temperature also increases subsequently heat transfer rate decreases. This result keeps more cooling for the hard disk drives and might be intrigued for engineers.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!