
Patients with skipped-level disk degeneration (SLDD) were recently reported as having a higher prevalence of Schmorl's nodes than patients with contiguous multi-level disk degeneration (CMDD). Fourteen versions of a nonlinear finite element model of a lumbar spine, representing different patterns of single and multi-level disk degeneration, were simulated under physiological loading. Results show that vertebral strain energy is a possible predictor in the development of Schmorl's nodes. The analysis also shows evidence that the development of Schmorl's nodes may be highly dependent on the location of the degeneration disk, with a higher prevalence at superior levels of the lumbar spine.
Cartilage, Lumbar Vertebrae, Finite Element Analysis, Humans, Female, Bone Remodeling, Intervertebral Disc Degeneration, Stress, Mechanical, Aged, Biomechanical Phenomena
Cartilage, Lumbar Vertebrae, Finite Element Analysis, Humans, Female, Bone Remodeling, Intervertebral Disc Degeneration, Stress, Mechanical, Aged, Biomechanical Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
