Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain

Authors: Mathieu Mansuy; Max Giordano; Joseph K. Davidson;

Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain

Abstract

The major part of production cost of a manufacturing product is set during the design stage and especially by the tolerancing choice. Therefore, a lot of work involves trying to simulate the impact of these choices and provide an automatic optimization. For integrating this modeling in computer aided design (cad) software, the tolerancing must be modeled by a mathematical tool. Numerous models have been developed but few of them are really efficient. Two advanced models are “T-map” model developed by Joseph K. Davidson and “deviation domain” developed by Max Giordano. Despite the graphical representation of these two models seems to be similar, they have significant differences in their construction and their resolution method. These similarities and differences highlight the needs of tolerancing modeling tool in each kind of problems, especially in case of assembly with parallel links.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!