Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Manufacturing Science and Engineering
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orthogonal Microcutting of Thin Workpieces

Authors: Kushendarsyah, Saptaji; Sathyan, Subbiah;

Orthogonal Microcutting of Thin Workpieces

Abstract

With a broader intention of producing thin sheet embossing molds, orthogonal cutting experiments of thin workpieces are conducted. Challenges in machining thin workpieces are many: machining induced stress and deformation, fixturing challenges, and substrate effects. A setup involving continuous orthogonal cutting with a single crystal diamond toolof an aluminum alloy (Al6061-T6) workpiece fixtured using an adhesive to reduce its thickness is used to study trends in forces, chip thickness, and to understand to what level of thickness we can machine the workpiece down to and in what form the adhesive fails. There are no significant changes observed in the forces and chip thickness between thick and thin workpieces during the experiments, meaning that the cutting energy required is the same in cutting thick or thin workpieces. The limitation to achieve thinner workpiece is attributed mainly due to the detachment of the thin workpiece by peel-off induced by adhesive failure mode, which occurs during initial chip formation as the tool initially engages with the workpiece. We use a finite element model to understand the stresses in the workpiece during this initial tool engagement when it is thick and when it is thin, as well as the effect of the adhesive itself and the effect of adhesive thickness. Simulation results show that the tensile stress induced by the tool at the workpiece-adhesive interface is higher for a thinner workpiece (45 μm) than a thicker workpiece (150 μm) and higher at the entrance. As such, a thinner workpiece is more susceptible to peel-off. The peeling of thin workpiece is induced when the high tensile stress at the interface exceeds the tensile-at-break value of the adhesive.

Related Organizations
Keywords

:Engineering::Manufacturing::Product engineering [DRNTU]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green