Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Optimization of Abrasive Fluid Jet for Completion and Stimulation of Oil and Gas Wells

Authors: Anuj Gupta;

Performance Optimization of Abrasive Fluid Jet for Completion and Stimulation of Oil and Gas Wells

Abstract

This paper provides an overview of the development and optimization of abrasive-slurry-jet methods for completion and stimulation applications. Abrasive particles added to the fluid dramatically reduced the system pressure requirements. The paper discusses the technical capabilities of cutting through various materials and formations and also discusses improvements and proven applications. Abrasive fluid-jet systems are capable of cutting through rocks of all types, and with greater location control that is not susceptible to the geologically induced deviations encountered with mechanical methods. Abrasive fluid-jets drill rock through the erosion induced by very small particles which individually remove only small fragments but are in such numbers that the drilling rate is at or above that of conventional tools. The particles are powered by the velocity of the supporting fluid, generated in turn by pumps on the surface. The cutting occurs ahead of the nozzle body allowing the nozzle assembly to be fed in the tunnel to create drain-holes. Fluid-jet methods have the potential of improving completion and stimulation efficiency in heterogeneous formations such as fractured and/or vuggy carbonate reservoirs. Application for completion, stimulation and, even, well/platform abandonment has been successful.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!