
doi: 10.1115/1.4001025
pmid: 20459212
Understanding the mechanisms of tissue injury in hydrocephalus is important to shed light on the pathophysiology of this neurostructural disorder. To date, most of the finite element models created to study hydrocephalus have been two-dimensional (2D). This may not be adequate as the geometry of the cerebral ventricles is unique. In this study, a three-dimensional (3D) finite element model of the cerebral ventricles during hydrocephalus is presented. Results from this model show that during hydrocephalus, the periventricular regions experience the highest stress, and stress magnitude is approximately 80 times higher than the cerebral mantle. This suggests that functional deficits observed in hydrocephalic patients could therefore be more related to the damage to periventricular white matter. In addition, the stress field simulated in the tissues based on the 3D model was found to be approximately four times lower than on the 2D model.
Animals, Humans, Cerebral Ventricles, Hydrocephalus, Rats
Animals, Humans, Cerebral Ventricles, Hydrocephalus, Rats
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
