Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Journal of Applied Mechanics
Article . 1968 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Continuum Theory for a Laminated Medium

Continuum theory for a laminated medium
Authors: Sun, C.-T.; Achenbach, J. D.; Herrmann, G.;

Continuum Theory for a Laminated Medium

Abstract

Abstract A system of displacement equations of motion is presented, pertaining to a continuum theory to describe the dynamic behavior of a laminated composite. In deriving the equations, the displacements of the reinforcing layers and the matrix layers are expressed as two-term expansions about the mid-planes of the layers. Dynamic interaction of the layers is included through continuity relations at the interfaces. By means of a smoothing operation, representative kinetic and strain energy densities for the laminated medium are obtained. Subsequent application of Hamilton’s principle, where the continuity relations are included through the use of Lagrangian multipliers, yields the displacement equations of motion. The distinctive trails of the system of equations are uncovered by considering the propagation of plane harmonic waves. Dispersion curves for harmonic waves propagating parallel to and normal to the layering are presented, and compared with exact curves. The limiting phase velocities at vanishing wave numbers agree with the exact, limits. The lowest antisymmetric mode for waves propagating in the direction of the layering shows the strongest dispersion, which is very well described by the approximate theory over a substantial range of wave numbers.

Related Organizations
Keywords

mechanics of solids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    245
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
245
Top 10%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!