
doi: 10.1115/1.3424048
A counterexample involving a homogeneous, elastically isotropic beam of narrow rectangular cross section supports the assertion in the title. Specifically, a class of two-dimensional displacement fields is considered that represent exact plane stress solutions for a built-in cantilevered beam subject to “reasonable” loads. The one-dimensional vertical displacement V predicted by Timoshenko beam theory for these loads can be regarded as an approximation to either the exact vertical displacement v at the center line, or a weighted average of v over the cross section, or a quantity defined to make the virtual work of beam theory equal to that of plane stress theory. Regardless of the interpretation of V and despite the presence of an adjustable shear factor, Timoshenko beam theory for this class of problems is never more accurate than elementary beam theory.
Rods (beams, columns, shafts, arches, rings, etc.)
Rods (beams, columns, shafts, arches, rings, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
