
doi: 10.1115/1.3422775
The WKB solution is derived together with the condition for its validity for elastic waves propagating into an inhomogeneous elastic medium. Large frequency expansion solution is also derived. It is found that the WKB solution agrees with that derived for large frequencies when the frequency approaches infinity. Some exact solutions are deduced from the WKB solution. Finally, we consider motions in medium which consists of a material with harmonic periodicity. The solution is obtained by means of a perturbation method. It is shown that, only when the wavelength of the incident wave is small compared with the periodicity-length of the material, the WKB solution constitutes a good approximation. When the wavelength is comparable with this periodicity-length, then, in certain special cases, the material cannot maintain time-harmonic waves; such harmonic waves are not “stable.” These and other solutions are discussed in detail.
Bulk waves in solid mechanics
Bulk waves in solid mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
