Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fatigue Reliability Functions

Authors: V. A. Avakov; R. G. Shomperlen;

Fatigue Reliability Functions

Abstract

There are many fatigue test and statistical procedures to establish the life distribution function Q = Q(N) at constant stress (S) level. But the stress distribution function, Q = Q(S), at specified life (N) is more important to the designer, and it remains less developed. Generally, if the fatigue life distribution Q(N) and fatigue curve S(N) equations are defined, the fatigue strength distribution Q(S) is implied. However, it has been shown [4, 6, 7, 9] that any life distribution model Q(N) may be transformed into the complicated strength distribution function Q(S). In this study orthogonal relations have been developed in order to predict complications and to resolve the problem under certain conditions. With the aid of the orthogonal relations strength distributions Q(S) have been deduced using (1) lognormal, (2) two-parameter Weibull, and (3) three-parameter logweibull life models Q(N).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!