Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied M...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Mechanics
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Screw Theory of Timoshenko Beams

Authors: J. M. Selig; Xilun Ding;

A Screw Theory of Timoshenko Beams

Abstract

In this work, the classic theory of Timoshenko beams is revisited using screw theory. The theory of screws is familiar from robotics and the theory of mechanisms. A key feature of the screw theory is that translations and rotations are treated on an equal footing and here this means that bending, torsion, and extensions can all be considered together in a particularly simple manner. By combining forces and torques into a six-dimensional vector called a wrench, Hooke’s law for the Timoshenko beam can be written in a very simple form. From here simple expressions can be found for the kinetic and potential energy densities of the beam. Hence equations of motion for small vibrations of the beam can be easily derived. The screw theory also leads to a new understanding of the boundary conditions for beams. It is demonstrated that simple boundary conditions are closely related to mechanical joints. In order to set up the boundary conditions for a beam attached to a joint, a system of wrenches dual to the screws representing the freedoms of the joint must be found. Finally, a screw version of the Rayleigh–Ritz numerical method is introduced. An example is investigated in which the boundary conditions on the beam lead to vibrational modes of the beam involving bending, torsion, and extension at the same time.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
bronze