
doi: 10.1115/1.3005083
The analysis of buckling mode interaction of fiber-reinforced composite columns, modeled as plate assemblies, is presented. The main assumptions are linear elasticity; a linear fundamental equilibrium path; the existence of critical states that are coincident or near coincident; and a coupled path rising from a quadratic combination of modal displacements due to interaction. The formulation adopted is known as the W-formulation, in which the energy is written in terms of a sliding set of incremental coordinates, measured with respect to the fundamental path. The energy is then expressed with respect to a reduced modal coordinate basis, and the coupled solution arising from interaction is computed. An example of a pultruded composite I-column subjected to axial compression illustrates the procedure.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
