<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1115/1.2005-oct-3
This article discusses in less than 40 years, a novelty has grown into a mainstay of engineering practice. Only a few forward-looking technology companies invested in computers, primarily mainframe systems. While bringing the benefits of data management and real-time processing to engineering, the mainframes were also a headache. Engineers spent countless hours correcting functional problems and writing programs. The programs, particularly large-scale ones involving difficult computations, were executed in batch processing mode, meaning that the engineer had only one attempt each day to run the programs. The engineering community must advance computer technology to the level where engineers can validate a structure completely using computational tools, without having to develop physical models and prototypes. The next step is cognitive information processing using the computer to actually mimic the attributes of the human brain.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |