
doi: 10.1115/1.2001-jul-3
This article describes application of finite element analysis (FEA) in snap tool, developed by Snap-on Inc. in Kenosha, Wisconsin. FEA has been finding its way down the engineering chain with the help of easy-to-use software. FEA is the use of a complex system of points—called nodes—that form a grid, or mesh, across a model. The mesh contains the material and structural properties that define how the part will react to certain load conditions. Snap-on has discovered that if engineers analyze their products as they design them, they understand their products better and face fewer project delays. Engineers who use FEA have found that analyzing as they design parts saves development time. The Snap-on power tools group's move to integrated design and analysis should be complete by year's end. Mechanical failure often results from a variety of forces, including motion, stress, thermal and fluid-flow effects, and vibration. Multiphysics applications give engineers the ability to run all these analyses at the same time, to determine how the tower would withstand real-world conditions that occur simultaneously.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
