Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Somatostatin‐mediated inhibitory postsynaptic potential in sympathetically denervated guinea‐pig submucosal neurones.

Authors: K Z, Shen; A, Surprenant;

Somatostatin‐mediated inhibitory postsynaptic potential in sympathetically denervated guinea‐pig submucosal neurones.

Abstract

1. Intracellular recordings were made from submucosal neurones in guinea‐pig ileum. In some animals, the extrinsic (sympathetic) nerves to the submucosal plexus were severed 5‐7 days previously. The actions of somatostatin and somatostatin analogues on membrane potential, membrane current and inhibitory postsynaptic potentials (IPSPs) were examined. 2. Somatostatin, somatostatin(1‐28), [D‐Trp8]somatostatin and the somatostatin analogue CGP 23996 all produced equivalent maximum hyperpolarizations or outward currents; half‐maximal concentrations (EC50 values) were 9‐11 nM. The somatostatin analogue MK 678 had an EC50 of 0.9 nM. Extrinsic sympathectomy did not alter concentration‐response relations for somatostatin or its analogues. 3. Somatostatin (> 100 nM) produced hyperpolarization or outward current that declined almost completely during superfusion for 2‐4 min; decline of the somatostatin current was exponential with a time constant of 30 s in the presence of 2 microM somatostatin. Desensitization was not altered by extrinsic denervation. 4. Recovery from desensitization was rapid and followed the time course of agonist wash‐out. Forskolin, phorbol esters, dithiothreitol, hydrogen peroxide, concanavalin A, or reducing temperature from 35 to 29 degrees C did not alter the time course, degree of, or recovery from desensitization. 5. The somatostatin‐induced desensitization was of the homologous type; no cross‐desensitization to opiate or alpha 2‐adrenoceptor agonists (which activate the same potassium conductance) occurred. 6. Somatostatin desensitization did not alter the adrenergic IPSP seen in sympathetically innervated preparations but abolished the non‐adrenergic IPSP recorded from normal preparations and from preparations in which the extrinsic sympathetic nerve supply had been surgically removed. 7. The selective blockade of the non‐adrenergic IPSP by the homologous‐type somatostatin desensitization characterized in the present study provides strong support for the hypothesis that somatostatin is the neurotransmitter underlying the non‐adrenergic IPSP in both normal and extrinsically denervated submucosal neurones.

Related Organizations
Keywords

Neurons, Sympathetic Nervous System, Guinea Pigs, Muscle, Smooth, In Vitro Techniques, Membrane Potentials, Electrophysiology, Ileum, Receptors, Adrenergic, alpha-2, Receptors, Opioid, Autonomic Denervation, Animals, Intestinal Mucosa, Somatostatin, Microelectrodes, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
bronze