Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 1989 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibitory postsynaptic potentials in neonatal rat sympathetic preganglionic neurones in vitro.

Authors: N Mo; N J Dun;

Inhibitory postsynaptic potentials in neonatal rat sympathetic preganglionic neurones in vitro.

Abstract

1. Intracellular recordings were made from antidromically identified sympathetic preganglionic neurones (SPNs) in transverse sections of thoraco‐lumbar spinal cord from neonatal (12‐22 day) rats. 2. Two types of hyperpolarizing (inhibitory) postsynaptic potentials (IPSPs) were recorded in the SPNs. The first type, which we have termed unitary IPSPs, were small, discrete IPSPs that occurred spontaneously and also following chemical or electrical stimulation applied to the spinal cord slices. The second type IPSP was a hyperpolarizing response evoked by either dorsal or ventral root stimulation. 3. Spontaneously occurring unitary IPSPs had an amplitude of 1 to 5 mV, and reversal potential of ‐60 to ‐75 mV; they were reversibly abolished by low Ca2+, tetrodotoxin (TTX) or strychnine but not by bicuculline and picrotoxin. 4. Pressure application of N‐methyl‐D‐aspartate (NMDA), an excitatory amino SPNs; these were abolished by either strychnine or by the NMDA receptor antagonist D‐2‐amino‐5‐phosphonovalerate. Furthermore, electrical stimulation of dorsal rootlets elicited in several SPNs the discharge of strychnine‐sensitive unitary IPSPs. 5. Electrical stimulation applied to dorsal or ventral rootlets elicited in nineteen and eight SPNs, respectively, an IPSP of larger amplitude (5 to 15 mV). The IPSP exhibited a reversal potential of ‐60 to 75 mV; it was changed to a depolarizing response in a low [Cl‐]o solution, but was not significantly affected in a low [K+]o. Strychnine but not bicuculline or picrotoxin reversibly blocked the IPSPs in nearly all the SPNs. Additionally, hexamethonium and d‐tubocurarine antagonized the IPSPs evoked by ventral but not by dorsal root stimulations. 6. Our results suggest that unitary and evoked IPSPs recorded in SPNs are due primarily to an increase of Cl‐ conductance by glycine or a glycine‐like substance, released from interneurones, that can be activated by NMDA. Furthermore, IPSPs evoked by ventral root stimulation appear to represent a disynaptic event whereby nicotinic activation of a glycine‐releasing interneurone results in a release of the inhibitory transmitter; this is then analogous to the Renshaw cell circuitry of the spinal motoneurones.

Related Organizations
Keywords

Aspartic Acid, N-Methylaspartate, Autonomic Fibers, Preganglionic, Rats, Inbred Strains, Strychnine, Tetrodotoxin, Membrane Potentials, Rats, Animals, Newborn, Spinal Cord, Animals, Evoked Potentials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Average
Top 10%
Top 10%
bronze