
doi: 10.1113/eph8702478
pmid: 12447453
In both medical research and diagnostics characterization of biological tissue on the cellular level relies on high‐resolution optical microscopy. In most cases, however, tissue is excised for microscopic investigation, in part because conventional microscopes are bulky instruments. Imaging of cells in the intact living organism has been difficult. Over the last decade several groups have developed miniature confocal microscopes that use fibre optics to deliver light to the specimen and to measure either reflected or excited fluorescence light. In addition, two‐photon excitation recently has been employed in a small portable ‘fibrescope’. A potential clinical application of these microscope probes is their endoscopic use for optical biopsy of inner organs or guidance of conventional biopsy. As a mobile research tool they may permit imaging of neuronal activity in the brain of awake, behaving animals. Here, we review technological approaches to build miniaturized fluorescence microscopes and discuss their potential applications.
Microscopy, Fluorescence, Multiphoton, Miniaturization, Animals, Fiber Optic Technology, Humans, Endoscopy
Microscopy, Fluorescence, Multiphoton, Miniaturization, Animals, Fiber Optic Technology, Humans, Endoscopy
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 72 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
