Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trafficarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Traffic
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Traffic
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Traffic
Article . 2018
versions View all 2 versions
addClaim

The outer membrane vesicles: Secretion system type zero

Authors: Andrea, Guerrero-Mandujano; Cecilia, Hernández-Cortez; Jose Antonio, Ibarra; Graciela, Castro-Escarpulli;

The outer membrane vesicles: Secretion system type zero

Abstract

Gram‐negative bacteria have mechanisms through which they can colonize and survive in different environments, such as the secretion systems types (1‐6) that have been widely studied and characterized. Nowadays, some authors have proposed extracellular structures, such as the outer membrane vesicles (OMVs), to be considered as an additional and independent secretion system. The OMVs are spherical particles of 50‐250 nm in diameter; they originate in the outer membrane, and therefore they have a very similar composition to the latter. These particles can transport an important variety of biomolecules: enzymes, toxins, antigenic determinants and even nucleic acids. Thus, it is of great interest to collect data describing the advantages of the transport of biomolecules through the OMVs and, thus, determine their role as a potential secretion system.

Related Organizations
Keywords

Protein Transport, Virulence, Virulence Factors, Cell Membrane, Gram-Negative Bacteria, Transport Vesicles, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 1%
Top 10%
Top 1%
bronze