
doi: 10.1111/tra.12488
pmid: 28421662
Gram‐negative bacteria have mechanisms through which they can colonize and survive in different environments, such as the secretion systems types (1‐6) that have been widely studied and characterized. Nowadays, some authors have proposed extracellular structures, such as the outer membrane vesicles (OMVs), to be considered as an additional and independent secretion system. The OMVs are spherical particles of 50‐250 nm in diameter; they originate in the outer membrane, and therefore they have a very similar composition to the latter. These particles can transport an important variety of biomolecules: enzymes, toxins, antigenic determinants and even nucleic acids. Thus, it is of great interest to collect data describing the advantages of the transport of biomolecules through the OMVs and, thus, determine their role as a potential secretion system.
Protein Transport, Virulence, Virulence Factors, Cell Membrane, Gram-Negative Bacteria, Transport Vesicles, Bacterial Outer Membrane Proteins
Protein Transport, Virulence, Virulence Factors, Cell Membrane, Gram-Negative Bacteria, Transport Vesicles, Bacterial Outer Membrane Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 183 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
