Downloads provided by UsageCounts
Abstract Using access to a unique bank loss database, we find positive dependencies of default resolution times (DRTs) of defaulted bank loan contracts and final loan loss rates (losses given default, LGDs). Due to this interconnection, LGD predictions made at the time of default and during resolution are subject to censoring. Pure (standard) LGD models are not able to capture effects of censoring. Accordingly, their LGD predictions may be biased and underestimate loss rates of defaulted loans. In this paper, we develop a Bayesian hierarchical modelling framework for DRTs and LGDs. In comparison to previous approaches, we derive final DRT estimates for loans in default which enables consistent LGD predictions conditional on the time in default. Furthermore, adequate unconditional LGD predictions can be derived. The proposed method is applicable to duration processes in general where the final outcomes depend on the duration of the process and are affected by censoring. By this means, we avoid bias of parameter estimates to ensure adequate predictions.
330, ddc:330, 330 Wirtschaft, ddc:310, Applications of statistics, 310 Statistik, default resolution time, Global Credit Data, loss given default, random effects, default resolution time, Global Credit Data, random effects, global credit data, loss given default
330, ddc:330, 330 Wirtschaft, ddc:310, Applications of statistics, 310 Statistik, default resolution time, Global Credit Data, loss given default, random effects, default resolution time, Global Credit Data, random effects, global credit data, loss given default
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 75 | |
| downloads | 88 |

Views provided by UsageCounts
Downloads provided by UsageCounts