
doi: 10.1111/risa.14180
pmid: 37337464
AbstractIn this study, we develop a model that assesses product risk using online reviews from Amazon.com. We first identify unique words and phrases capable of identifying hazards. Second, we estimate risk severity using hazard type weights and risk likelihood using total reviews as a proxy for sales volume. In addition, we obtain expert assessments of product hazard risk (risk likelihood and severity) from a sample of high‐ and low‐risk consumer products identified by a computerized risk assessment model we have developed. Third, we assess the validity of our computerized product risk assessment scoring model by utilizing the experts’ survey responses. We find that our model is especially consistent with expert judgments of hazard likelihood but not as consistent with expert judgments of hazard severity. This model helps organizations to determine the risk severity, risk likelihood, and overall risk level of a specific product. The model produced by this study is helpful for product safety practitioners in product risk identification, characterization, and mitigation.
Judgment, Commerce, Computer Simulation, Risk Assessment, Probability
Judgment, Commerce, Computer Simulation, Risk Assessment, Probability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
