
doi: 10.1111/prd.12250
pmid: 30892768
AbstractPeriodontitis is a chronic inflammatory condition leading to destruction of the tooth supporting tissues, which if left untreated may cause tooth loss. The treatment of periodontitis mainly aims to arrest the inflammatory process by infection control measures, although in some specific lesions a limited periodontal regeneration can also be attained. Current regenerative approaches are aimed to guide the cells with regenerative capacity to repopulate the lesion and promote new cementum and new connective tissue attachment. The first phase in periodontal tissue regeneration involves the differentiation of mesenchymal cells into cementoblasts to promote new cementum, thus facilitating the attachment of new periodontal ligament fibers to the root and the alveolar bone. Current regenerative approaches limit themselves to the confines of the lesion by promoting the self‐regenerative potential of periodontal tissues. With the advent of bioengineered therapies, several studies have investigated the potential use of cell therapies, mainly the use of undifferentiated mesenchymal cells combined with different scaffolds. The understanding of the origin and differentiation patterns of these cells is, therefore, important to elucidate their potential therapeutic use and their comparative efficacy with current technologies. This paper aims to review the in vitro and experimental studies using cell therapies based on application of cementoblasts and mesenchymal stem cells isolated from oral tissues when combined with different scaffolds.
Dental Cementum, Periodontium, Bone Regeneration, Connective Tissue, Periodontal Ligament, Guided Tissue Regeneration, Periodontal, Humans, Regeneration, Periodontitis
Dental Cementum, Periodontium, Bone Regeneration, Connective Tissue, Periodontal Ligament, Guided Tissue Regeneration, Periodontal, Humans, Regeneration, Periodontitis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 163 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
