Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Production and Operations Management
Article
License: Wiley Online Library User Agreement
Data sources: Sygma
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs

Authors: Kasapidis, G. A.; Paraskevopoulos, D. C.; Repoussis, P. P.; Tarantilis, C. D.;

Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs

Abstract

A common assumption in the shop scheduling literature is that the processing order of the operations of each job is sequential; however, in practice, there can be multiple connections and finish‐to‐start dependencies among the operations of each job. This paper studies flexible job shop scheduling problems with arbitrary precedence graphs. Rigorous mixed integer and constraint programming models are presented, as well as an evolutionary algorithm is proposed to solve large‐scale problems. The proposed heuristic solution framework is equipped with efficient evolution and local search mechanisms as well as new feasibility detection and makespan estimation methods. To that end, new theorems are derived that extend previous theoretical contributions of the literature. Computational experiments on existing benchmark datasets show that the proposed solution methods outperform the current state‐of‐the‐art. Overall, 59 new best solutions and 61 new lower bounds are produced for a total of 228 benchmark problem instances of the literature. To explore the impact of the arbitrary precedence graphs, lower bounds and heuristic solutions are generated for new large‐scale problems. These experiments illustrate that the machine assignment flexibility and density of the precedence graphs, affect not only the makespan, but also the difficulty of producing good upper bounds.

Keywords

HD28

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green