Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Biology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
Plant Biology
Article . 2024
versions View all 2 versions
addClaim

Pollen, anther, stamen, and androecium mimicry

Authors: K. Lunau; M. G. G. De Camargo; V. L. G. Brito;

Pollen, anther, stamen, and androecium mimicry

Abstract

ABSTRACTFloral colours represent a highly diverse communication signal mainly involved in flower visitors' attraction and guidance, but also flower discrimination, filtering non‐pollinators and discouraging floral antagonists. The divergent visual systems and colour preferences of flower visitors, as well as the necessity of cues for flower detection and discrimination, foster the diversity of floral colours and colour patterns. Despite the bewildering diversity of floral colour patterns, a recurrent component is a yellow UV‐absorbing floral centre, and it is still not clear why this pattern is so frequent in angiosperms. The pollen, anther, stamen, and androecium mimicry (PASAM) hypothesis suggests that the system composed of the flowers possessing such yellow UV‐absorbing floral reproductive structures, the flowers displaying central yellow UV‐absorbing structures as floral guides, and the pollen‐collecting, as well as pollen‐eating, flower visitors responding to such signals constitute the world's most speciose mimicry system. In this review, we call the attention of researchers to some hypothetical PASAM systems around the globe, presenting some fascinating examples that illustrate their huge diversity. We will also present new and published data on pollen‐eating and pollen‐collecting pollinators' responses to PASAM structures supporting the PASAM hypothesis and will discuss how widespread these systems are around the globe. Ultimately, our goal is to promote the idea that PASAM is a plausible first approach to understanding floral colour patterns in angiosperms.

Country
Germany
Keywords

Magnoliopsida, Reproduction, Pollen, Flowers, Pollination

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
hybrid