
doi: 10.1111/obes.12190
AbstractThis paper considers estimation of discrete choice models when agents report their ranking of the alternatives (or some of them) rather than just the utility maximizing alternative. We investigate the parametric conditional rank‐ordered Logit model. We show that conditions for identification do not change even if we observe ranking. Moreover, we fill a gap in the literature and show analytically and by Monte Carlo simulations that efficiency increases as we use additional information on the ranking.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
