Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Medical and Veterina...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical and Veterinary Entomology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical and Veterinary Entomology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate and the seasonal abundance of the tick Dermacentor reticulatus

Authors: Sands, Bryony O; Bryer, Katherine; Wall, Richard;

Climate and the seasonal abundance of the tick Dermacentor reticulatus

Abstract

AbstractDermacentor reticulatus (Ixodida: Ixodidae, Fabricius 1794) is one of the most widely distributed and abundant tick species in central Europe and is a vector for a range of pathogens. Nevertheless, many aspects of its ecology and distribution remain poorly understood. To quantify the seasonal abundance of this species in the U.K. and the environmental factors that determine this, weekly sampling at sites throughout Wales and southern England was undertaken for 12 months. This showed that the activity of adult D. reticulatus peaked February and March and that no individuals were collected between May and mid‐October; no questing tick activity was observed when the 5‐day average temperature was greater than 15 °C. A single nymph was collected by dragging, confirming speculation over the nidicolous status of larval and nymphal stadia. Laboratory analysis found that D. reticulatus were able survive cold shock and the lower lethal temperature was estimated to be between −18 and −20 °C. Habitat was significantly associated with tick activity, with higher numbers of ticks collected from low lying vegetation in marsh environments than from exposed grassland or woodland. A strong association was observed between activity and saturation deficit suggesting that the seasonal pattern of activity seen in the field, within the sites where it was abundant, is more strongly determined by temperature than humidity. Range expansion within the U.K. should be expected, bringing with it an elevated disease risk for animal and human hosts.

Country
United Kingdom
Related Organizations
Keywords

Nymph, 570, Ixodidae, 590, Temperature, Humidity, Saturation Deficit, Range expansion, Phenology, Piroplasmosis, Babesiosis, Animals, Seasons, Ecosystem, Dermacentor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
hybrid