Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Plant Path...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant Pathology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant Pathology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
versions View all 3 versions
addClaim

Plasmopara viticola effector PvRXLR111 stabilizes VvWRKY40 to promote virulence

Authors: Tao Ma; Shuyun Chen; Jiaqi Liu; Peining Fu; Wei Wu; Shiren Song; Yu Gao; +2 Authors

Plasmopara viticola effector PvRXLR111 stabilizes VvWRKY40 to promote virulence

Abstract

AbstractPlasmopara viticola, the causal organism of grapevine downy mildew, secretes a vast array of effectors to manipulate host immunity. Previously, several cell death‐inducing PvRXLR effectors have been identified, but their functions and host targets are poorly understood. Here, we investigated the role of PvRXLR111, a cell death‐inducing RXLR effector, in manipulating plant immunity. When coexpressed with other PvRXLR effectors, PvRXLR111‐induced cell death was prevented. Transient expression of PvRXLR111 in Nicotiana benthamiana suppressed bacterial flagellin peptide flg22‐elicited immune responses and enhanced Phytophthora capsici infection. PvRXLR111 induction in Arabidopsis increased susceptibility to Hyaloperonospora arabidopsidis. PvRXLR111 expression in Pseudomonas syringae promoted bacterial colonization. By immunoprecipitation‐mass spectrometry analysis, yeast two‐hybrid, pull‐down, and bimolecular fluorescence complementation assays, it was shown that PvRXLR111 interacted with Vitis vinifera putative WRKY transcription factor 40 (VvWRKY40), which increased VvWRKY40 stability. Transient expression of VvWRKY40 in N. benthamiana inhibited flg22‐induced reactive oxygen species burst and enhanced P. capsici infection and silencing NbWRKY40 attenuated P. capsici colonization. These results suggest VvWRKY40 functions as a negative regulator in plant immunity and that PvRXLR111 suppresses host immunity by stabilizing VvWRKY40.

Related Organizations
Keywords

Nicotiana, Virulence, Protein Stability, Arabidopsis, Original Articles, Fungal Proteins, Oomycetes, Vitis, Plant Diseases, Plant Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
Green
gold