Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microcirculationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microcirculation
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Microcirculation
Article . 2018
versions View all 2 versions
addClaim

Hepatic transudation barrier properties

Authors: Ranjeet M. Dongaonkar; Randolph H. Stewart; Christopher M. Quick; Karen L. Uray; Charles S. Cox; Glen A. Laine;

Hepatic transudation barrier properties

Abstract

AbstractObjectiveFluid and protein continuously transude from the surface of the liver. Despite a common understanding that transudation plays a critical role in hepatic interstitial and peritoneal fluid balance, transudation from the entire liver has not been studied. Therefore, the goal of the present work was to provide the first direct measurement of the hepatic transudation rate and transudation barrier properties.MethodsTransudation rates were determined by collecting transudate from the entire liver. Hydraulic conductivity, and fluid transudation and protein reflection coefficients of the transudation barrier (formed by the subscapular interstitial matrix, capsule, and peritoneum) were determined from changes in fluid and protein transudation rates in response to hepatic venous pressure elevation.ResultsFollowing hepatic venous pressure elevation from 6.1 ± 0.9 to 11.1 ± 0.6 mm Hg, transudation rate increased from 0.13 ± 0.03 to 0.37 ± 0.03 mL/min·100 g. Transudation barrier hydraulic conductivity, fluid transudation and protein reflection coefficients (3.9 × 10−4 ± 5.7 × 10−5 mL/min·mm Hg·cm2, 0.36 ± 0.04 mL/min·mm Hg, and 0.09 ± 0.03, respectively) were comparable to those reported for hepatic sinusoids.ConclusionsTaken together, these findings suggest that the hepatic transudation barrier is highly permeable at elevated sinusoidal pressures. These fundamental studies provide a better understanding of the hepatic transudation barrier properties and transudation under conditions that are physiologically and clinically relevant to ascites formation.

Keywords

Capillary Permeability, Kinetics, Liver, Animals, Ascites, Humans, Exudates and Transudates, Venous Pressure

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!