Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Meteoritics and Plan...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Meteoritics and Planetary Science
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Refractory materials in comet samples

Authors: D. J. Joswiak; D. E. Brownlee; A. N. Nguyen; S. Messenger;

Refractory materials in comet samples

Abstract

AbstractTransmission electron microscope examination of more than 250 fragments, >1 μm from comet Wild 2 and a giant cluster interplanetary dust particle (GCP) of probable cometary origin has revealed four new calcium‐aluminum‐rich inclusions (CAIs), an amoeboid olivine aggregate (AOA), and an additional AOA or Al‐rich chondrule (ARC) object. All of the CAIs have concentric mineral structures and are composed of spinel + anorthite cores surrounded by Al,Ti clinopyroxenes and are similar to two previous CAIs discovered in Wild 2. All of the cometary refractory objects are of moderate refractory character. The mineral assemblages, textures, and bulk compositions of the comet CAIs are similar to nodules in fine‐grained, spinel‐rich inclusions (FGIs) found in primitive chondrites and like the nodules may be nebular condensates that were altered via solid–gas reactions in the solar nebula. Oxygen isotopes collected on one Wild 2 CAI also match FGIs. The lack of the most refractory inclusions in the comet samples may reflect the higher abundances of small moderately refractory CAI nodules that were produced in the nebula and the small sample sizes collected. In the comet samples, approximately 2–3% of all fragments larger than 1 μm, by number, are CAIs and nearly 50% of all bulbous Stardust tracks contain at least one CAI. We estimate that ~0.5 volume % of Wild 2 material and ~1 volume % of GCP is in the form of CAIs. ARCs and AOAs account for <1% of the Wild 2 and GCP grains by number.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!