Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Sleep Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Sleep Research
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48620/89...
Other literature type . 2025
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Future of Non‐Invasive Brain Stimulation in Sleep Medicine

Authors: Krone, LB; Song, SH; Jaramillo, V; Violante, IR;

The Future of Non‐Invasive Brain Stimulation in Sleep Medicine

Abstract

ABSTRACTNon‐invasive brain stimulation (NIBS) methods carry particular appeal as non‐pharmacological approaches to inducing or improving sleep. However, intense research efforts to use transcranial magnetic stimulation (TMS) and electrical stimulation (tES) for sleep modulation have not yet delivered evidence‐based NIBS treatments in sleep medicine. The main obstacles lie in insufficiently robust stimulation protocols that affect neurophysiological and self‐reported sleep parameters, inadequately controlled—and explained—placebo effects, and heterogeneity in patient populations and outcome parameters. Recent technological advances, e.g., transcranial ultrasound stimulation (TUS) and temporal interference stimulation (TIS), make deep brain structures feasible targets. Real‐time approaches, e.g., closed‐loop auditory stimulation (CLAS), demonstrate efficacious modulation of different sleep oscillations by tuning stimulation to ongoing brain activity. The identification of sleep‐regulatory regions and cell types in the cerebral cortex and thalamus provides new specific targets. To turn this neuroscientific progress into therapeutic advancement, conceptual reframing is warranted. Chronic insomnia may not be optimally suited to demonstrate NIBS efficacy due to the mismatch between self‐reported symptoms and polysomnographic sleep parameters. More feasible initial approaches could be to (1) modulate specific sleep oscillations to promote specific sleep functions, (2) modify nightmares and traumatic memories with targeted memory reactivation, (3) increase ‘wake intensity’ in patients with depression to improve daytime fatigue and elevate sleep pressure and (4) disrupt pathological activity in sleep‐dependent epilepsies. Effective treatments in these areas of sleep medicine seem in reach but require rigorously designed clinical trials to identify which NIBS strategies bring real benefit in sleep medicine.

Keywords

neuromodulation, sleep interventions, sleep disorders, sleep treatment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid