
AbstractInflammatory hyperalgesia represents a nociceptive phenotype that can become persistent in nature through dynamic protein modifications. However, a large gap in knowledge exists concerning how the integration of intracellular signaling molecules coordinates a persistent inflammatory phenotype. Herein, we demonstrate that Raf Kinase Anchoring Protein (RKIP) interrupts a vital canonical desensitization pathway to maintain bradykinin (BK) receptor activation in primary afferent neurons. Biochemical analyses of primary neuronal cultures indicate bradykinin‐stimulated PKC phosphorylation of RKIP at Ser153. Furthermore, BK exposure increases G‐protein Receptor Kinase 2 (GRK2) binding to RKIP, inhibiting pharmacological desensitization of the BK receptor. Additional studies found that molecular RKIP down‐regulation increases BK receptor desensitization in real‐time imaging of primary afferent neurons, identifying a key pathway integrator in the desensitization process that controls multiple GRK2‐sensitive G‐protein coupled receptors. Therefore, RKIP serves as an integral scaffolding protein that inhibits BK receptor desensitization. image
Receptors, Bradykinin, raf Kinases, ORIGINAL ARTICLES, Phosphorylation, Bradykinin, Signal Transduction, Transcription Factors
Receptors, Bradykinin, raf Kinases, ORIGINAL ARTICLES, Phosphorylation, Bradykinin, Signal Transduction, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
