Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Metamorph...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Metamorphic Geology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Mechanisms of melt extraction during lower crustal partial melting

Authors: Michael A. Etheridge; Nathan R. Daczko; Timothy Chapman; Catherine A. Stuart;

Mechanisms of melt extraction during lower crustal partial melting

Abstract

AbstractProgressive vapour‐absent partial melting of a closed rock system increases melt pressure due to an expansion in the volume of the mineral plus melt assemblage. For a locally closed system, we quantify the melt pressure increase per increment of partial melting of a metapelite using phase equilibria modelling and combine it with Mohr–Coulomb theory to examine the interplay between melt pressure and fracture behaviour. It is shown that very small increments of vapour‐absent partial melting (<1%) increase melt pore pressure by tens of MPa leading to inevitable brittle failure of locally closed systems. Fracturing will affect these systems, even if initially limited to the scale of a few grains, and a connected microfracture network will enhance permeability as partial melting progresses. This will lead to a conditionally open system, potentially limiting accumulation of melt in the source. Repeated and cyclic fracture as temperature progressively increases will drive migration of the melt into sites of low fluid pressure at all scales. Crystal‐plastic creep processes create deformation‐induced dilatancy gradients that dominate over buoyancy forces at all scales in the melt source. Brittle and ductile deformation therefore cooperate in the extraction of melt. Enhanced porosity and permeability in ductile shear zones result in lower fluid pressure, providing a potentially important driving force for melt migration and drainage ‘up’ shear zones and along larger scale fluid pressure gradients in the crust.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!