
doi: 10.1111/jfb.15329
pmid: 36651303
AbstractMany aspects of natural and hatchery origin salmonid genetics, physiology, behaviour, anatomy and life histories have been compared due to the concerns about what effects domestication and hatchery rearing conditions have on fitness. Genetic and environmental stressors associated with hatchery rearing could cause greater developmental instability (DI), and therefore a higher degree of fluctuating asymmetry (FA) in various bilaterally paired characters, such as otoliths. Nonetheless, to appropriately infer the effects of DI on otolith asymmetry, otolith mineralogy must be accounted for. Vateritic otoliths differ substantially from aragonitic otoliths in terms of mass and shape and can artificially inflate any measurement of FA if not properly accounted for. In this study, measurements of otolith asymmetry between hatchery and natural origin Coho salmon Oncorhynchus kisutch from three different river systems were compared to assess the overall differences in asymmetry when the calcium carbonate polymorph accounted for 59.3% of otoliths from hatchery origin O. kisutch was vateritic compared to 11.7% of otoliths from natural origin O. kisutch. Otolith mineralogy, rather than origin, was the most significant factor influencing the differences in asymmetry for each shape metric. When only aragonitic otoliths were compared, there was no difference in absolute asymmetry between hatchery and natural origin O. kisutch. The authors recommend other researchers to assess otolith mineralogy when conducting studies regarding otolith morphometrics and otolith FA.
Otolithic Membrane, Rivers, Animals, Animal Migration, Oncorhynchus kisutch, Salmonidae
Otolithic Membrane, Rivers, Animals, Animal Migration, Oncorhynchus kisutch, Salmonidae
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
