
doi: 10.1111/jace.12291
handle: 10203/174763
Electro‐sintering, i.e., electrically enhanced densification without the assistance of Joule heating, has been observed in 70% dense 8 mol% Y2O3‐stabilized ZrO2 ceramics at temperatures well below those for conventional sintering. Remarkably, full density can be obtained without grain growth under a wide range of conditions, including those standard for solid oxide fuel cell (SOFS) and solid oxide electrolysis cell (SOEC), such as 840°C with 0.15 A/cm2. Microstructure evidence and scaling analysis suggest that electro‐sintering is aided by electro‐migration of pores, made possible by surface flow of cations across the pore meeting lattice/grain‐boundary counter flow of O2−. This allows pore removal from the anode/air interface and densification at unprecedentedly low temperatures. Shrinkage cracking caused by electro‐sintering of residual pores is envisioned as a potential damage mechanism in SOFC/SOEC 8YSZ membranes.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
