Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brain Pathologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Pathology
Article . 1996 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Pathology
Article . 1996
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utrophin: A Structural and Functional Comparison to Dystrophin

Authors: Kay E. Davies; Jonathon M. Tinsley; Derek J. Blake;

Utrophin: A Structural and Functional Comparison to Dystrophin

Abstract

Utrophin is an autosomally‐encoded homologue of dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene. Although, Utrophin is very similar in sequence to dystrophin and possesses many of the protein‐binding properties ascribed to dystrophin, both proteins are expressed in an apparently reciprocal manner and may be coordinately regulated. In normal skeletal muscle, Utrophin is found at the neuromuscular junction (NMJ) whereas dystrophin predominates at the sarcolemma. However, during development, and in some myopathies including DMD, utrophin is also found at the sarcolemma. This re‐distribution is often associated with a significant increase in the levels of utrophin. At the NMJ utrophin co‐localizes with the acetylcholine receptors (AChR) and may play a role in the stabilization of the synaptic cytoskeleton. Because utrophin and dystrophin are so similar, utrophin may be able to replace dystrophin in dystrophin deficient muscle. This review compares the structure and function of utrophin to dystrophin and discusses the rationale behind the use of utrophin as a potential therapeutic agent.

Related Organizations
Keywords

Utrophin, Neuromuscular Junction, Membrane Proteins, Papillary Muscles, Embryo, Mammalian, Cytoskeletal Proteins, Embryonic and Fetal Development, Structure-Activity Relationship, Genes, Animals, Humans, Tissue Distribution, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    163
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
163
Top 10%
Top 10%
Top 1%
gold