
Multiple subsets of nociceptive, parasympathetic, and sympathetic nerves innervate human nasal mucosa. These play carefully coordinated roles in regulating glandular, vascular, and other processes. These functions are vital for cleaning and humidifying ambient air before it is inhaled into the lungs. The recent identification of distinct classes of nociceptive nerves with unique patterns of transient receptor potential sensory receptor ion channel proteins may account for the polymodal, chemo‐ and mechanicosensitivity of many trigeminal neurons. Modulation of these families of proteins, excitatory and inhibitory autoreceptors, and combinations of neurotransmitters introduces a new level of complexity and subtlety to nasal innervation. These findings may provide a rational basis for responses to air‐temperature changes, culinary and botanical odorants (“aromatherapy”), and inhaled irritants in conditions as diverse as allergic and nonallergic rhinitis, occupational rhinitis, hyposmia, and multiple chemical sensitivity.
Nasal Mucosa, Humans, TRPV Cation Channels, Nervous System Physiological Phenomena, Ion Channel Gating
Nasal Mucosa, Humans, TRPV Cation Channels, Nervous System Physiological Phenomena, Ion Channel Gating
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
