Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 1983 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE STRUCTURE OF FIBRINOGEN AND FIBRIN: II. ARCHITECTURE OF THE FIBRIN CLOT*

Authors: Carolyn Cohen; George N. Phillips; John W. Weisel;

THE STRUCTURE OF FIBRINOGEN AND FIBRIN: II. ARCHITECTURE OF THE FIBRIN CLOT*

Abstract

Our present low resolution model for fibrinogen based on electron microscopy and x-ray diffraction data has been described by Cohen et al. A unique aspect of the structural analysis of fibrous proteins is that the molecular packing in ordered arrays reflects biologically significant intermolecular interactions. We have shown that the orthogonal sheet microcrystals, which are closely related to fibrin, are made up of a highly regular arrangement of two-stranded protofibrils, and we have visualized aspects of both the substructure of the protofibrils as well as their packing to form the fibrin clot. By correlation of structural data with biochemical studies we have begun to identify certain functional regions of the fibrinogen model related to fibrin. Many aspects of fibrinogen's physiological activity remain to be related to its structure. As our present model is improved by higher resolution studies, we will see with increasing clarity molecular features critical for clot formation and fibrinolysis.

Related Organizations
Keywords

Models, Molecular, Fibrin, Microscopy, Electron, Models, Chemical, X-Ray Diffraction, Computers, Fibrinogen, Humans, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!