Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 1980 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 1982 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

INTRAOPERATIVE MONITORING OF EVOKED POTENTIALS

Authors: Peter A. Raudzens;

INTRAOPERATIVE MONITORING OF EVOKED POTENTIALS

Abstract

Sensory EPs were recorded intraoperatively in 173 neurosurgical procedures (71 VEPs, 66 BAEPs, and 31 SSEPs) to evaluate the utility of this technique. EPs could be safely recorded in all cases, but the yield of useful results varied with each sensory modality. BAEPs were recorded reliably in 100% of the cases and intraoperative latency changes accurately predicted postoperative hearing deficits in 10%. Potential hearing deficits were detected in another 15%. BAEP changes were associated with brainstem dysfunction in only one case. VEP changes were difficult to interpret intraoperatively because of contamination by a high degree of variability and both false negative and false positive results. Changes in VEP amplitudes related to surgical manipulation of the optic chiasm were only suggested. SSEP changes were recorded reliably in only 75% of the cases and no correlations between SSEP changes and postoperative sensory function were established. Again, intraoperative amplitude attenuation of the SSEP waveform with surgical manipulation only suggested a potential sensory deficit. Intraoperative EP monitoring is a valuable technique that provides a functional analysis of the sensory nervous system during surgical procedures. Specific sensory stimuli and improved data analysis will increase the utility of this CNS monitor.

Related Organizations
Keywords

Cerebral Cortex, Afferent Pathways, Brain Diseases, Electroencephalography, Optic Nerve, Electric Stimulation, Spinal Cord Diseases, Median Nerve, Acoustic Stimulation, Evoked Potentials, Somatosensory, Evoked Potentials, Auditory, Evoked Potentials, Visual, Humans, Evoked Potentials, Photic Stimulation, Ulnar Nerve, Brain Stem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    206
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
206
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?