Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunological Reviews
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immunological functions of hyaluronan and its receptors in the lymphatics

Authors: Jackson, D;

Immunological functions of hyaluronan and its receptors in the lymphatics

Abstract

Summary:  The lymphatic system is best known for draining interstitial fluid from the tissues and returning it to the blood circulation. However, the lymphatic system also provides the means for immune surveillance in the immune system, acting as conduits that convey soluble antigens and antigen‐presenting cells from the tissues to the lymph nodes, where primary lymphocyte responses are generated. One macromolecule that potentially unites these two functions is the large extracellular matrix glycosaminoglycan hyaluronan (HA), a chemically simple copolymer of GlcNAc and GlcUA that fulfills a diversity of functions from danger signal to adhesive substratum, depending upon chain length and particular interaction with its many different binding proteins and a small but important group of receptors. The two most abundant of these receptors are CD44, which is expressed on leukocytes that traffic through the lymphatics, and LYVE‐1, which is expressed almost exclusively on lymphatic endothelium. Curiously, much of the HA within the tissues is turned over and degraded in lymph nodes, by a poorly understood process that occurs in the medullary sinuses. Indeed there are several mysterious aspects to HA in the lymphatics. Here we cover some of these by reviewing recent findings in the biology of lymphatic endothelial cells and their possible roles in HA homeostasis together with fresh insights into the complex and enigmatic nature of LYVE‐1, its regulation of HA binding by sialylation and self‐association, and its potential function in leukocyte trafficking.

Country
United Kingdom
Keywords

Molecular Sequence Data, Vesicular Transport Proteins, Membrane Transport Proteins, Lymphatic System, Hyaluronan Receptors, Animals, Cytokines, Humans, Amino Acid Sequence, Endothelium, Hyaluronic Acid, Sequence Alignment, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 10%
Top 10%
Top 1%
Green