Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 1997
Data sources: Research@WUR
FEMS Microbiology Reviews
Article . 2006 . Peer-reviewed
Data sources: Crossref
FEMS Microbiology Reviews
Article . 1997
Data sources: KNAW Pure
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fermentation in cyanobacteria1

Authors: Stal, L.J.; Moezelaar, H.R.;

Fermentation in cyanobacteria1

Abstract

Although cyanobacteria are oxygenic phototrophic organisms, they often thrive in environments that become periodically anoxic. This is particularly the case in the dark when photosynthetic oxygen evolution does not take place. Whereas cyanobacteria generally utilize endogenous storage carbohydrate by aerobic respiration, they must use alternative ways for energy generation under dark anoxic conditions. This aspect of metabolism of cyanobacteria has received little attention but nevertheless in recent years a steadily increasing number of publications have reported the capacity of fermentation in cyanobacteria. This review summarizes these reports and gives a critical consideration of the energetics of dark fermentation in a number of species. There are a variety of different fermentation pathways in cyanobacteria. These include home-and heterolactic acid fermentation, mixed acid fermentation and homoacetate fermentation, Products of fermentation include CO2, H-2, formate, acetate, lactate and ethanol. In all species investigated, fermentation is constitutive. All enzymes of the fermentative pathways are present in photoautotrophically grown cells. Many cyanobacteria are also capable of using elemental sulfur as electron acceptor. In most cases it seems unlikely that sulfur respiration occurs, The main advantage of sulfur reduction seems to be the higher yield of ATP which can be achieved during fermentation. Besides oxygen and elemental sulfur no other electron accepters for chemotrophic metabolism are known so far in cyanobacteria. Calculations show that the yield of ATP during fermentation, although it is low relative to aerobic respiration, exceeds the amount that is likely to be. required for maintenance, which appears to be very low in these cyanobacteria. The possibility of a limited amount oi biosynthesis during anaerobic dark metabolism is discussed. [KEYWORDS: fermentation; cyanobacteria; dark metabolism; Embden-Meyerhof-Parnas pathway; lactate dehydrogenase; lactate fermentation; mixed acid fermentation; sulfur reduction Blue-green-alga; oscillatoria-agardhii gomont; spring microbial mat; light-dark cycle; solar lake sinai; heterotrophic growth; unicellular cyanobacterium; ferredoxin oxidoreductase; anaerobic conditions; anoxygenic photosynthesis]

Country
Netherlands
Keywords

Sulfur reduction, Fermentation, Embden-Meyerhof-Parnas pathway, Lactate dehydrogenase, Lactate fermentation, Cyanobacteria, Dark metabolism, Mixed acid fermentation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    274
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
274
Top 10%
Top 1%
Top 1%
bronze