Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cardiovas...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2009
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiovascular Electrophysiology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cryoballoon Pulmonary Vein Isolation with Real‐Time Recordings from the Pulmonary Veins

Authors: Chun, K.R. Julian; Fürnkranz, Alexander; Metzner, Andreas; Schmidt, Boris; Tilz, Roland; Zerm, Thomas; Köster, Ilka; +4 Authors

Cryoballoon Pulmonary Vein Isolation with Real‐Time Recordings from the Pulmonary Veins

Abstract

Introduction: Cryoballoon (CB) ablation represents a novel technology for pulmonary vein isolation (PVI). We investigated feasibility and safety of CB‐PVI, utilizing a novel spiral catheter (SC), thereby obtaining real‐time PV potential registration. Methods: Following double transseptal puncture, a Lasso catheter (Biosense Webster, Diamond Bar, CA, USA) and the 28 mm CB were positioned within the left atrium. A novel SC (Promap, ProRhythm Inc., Ronkonkoma, NY, USA) was inserted through the lumen of the CB allowing PV signal registration during treatment. Time to PV conduction block was analyzed. If no stable balloon position was obtained, the SC was exchanged for a regular guide wire and PV conduction was assessed after treatment by Lasso catheter. Results: In 18 patients, 39 of 72 PVs (54%) were successfully isolated using the SC. The remaining 33 PVs were isolated switching to the regular guide wire. Time to PV conduction block was significantly shorter in PVs in which sustained PVI was achieved as compared to PVs in which PV conduction recovered within 30 minutes (33 ± 21 seconds vs 99 ± 65 seconds). In 40 PVs, time to PV conduction block was not obtained because of: (1) PVI not being achieved during initial treatment; (2) a distal position of the SC; or (3) isolation with regular guide wire. No procedural complications occurred. Conclusion: Visualization of real‐time PV conduction during CB PVI is safe, feasible, and allows accurate timing of PVI onset in a subset of PVs. Time to PV conduction block predicts sustained PVI. However, mechanical properties of the SC need to be improved to further simplify CB PVI.

Related Organizations
Keywords

Male, Cardiac & Cardiovascular Systems, Cryosurgery, Catheterization, PATHWAY, Heart Conduction System, catheter ablation, Atrial Fibrillation, Humans, atrial fibrillation, 1102 Cardiorespiratory Medicine and Haematology, pulmonary vein isolation, Aged, CATHETER ABLATION, Science & Technology, Body Surface Potential Mapping, Middle Aged, EFFICACY, Prognosis, Treatment Outcome, Cardiovascular System & Hematology, Surgery, Computer-Assisted, cryoablation, Pulmonary Veins, ATRIAL-FIBRILLATION, Cardiovascular System & Cardiology, Female, TACHYCARDIA, 3201 Cardiovascular medicine and haematology, Life Sciences & Biomedicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 1%
Top 10%
Green
bronze