Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cardiovas...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiovascular Electrophysiology
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Technical Considerations for Dominant Frequency Analysis

Authors: Jason, Ng; Alan H, Kadish; Jeffrey J, Goldberger;

Technical Considerations for Dominant Frequency Analysis

Abstract

Introduction: Dominant frequency (DF) analysis of atrial electrograms has been used to characterize atrial fibrillation (AF). The aim of this study was to explore technical issues that may affect the estimation of local activation rate during AF using DF analysis. Methods and Results: Epicardial atrial electrograms recorded during AF from 10 dogs were used to evaluate the effects of unipolar versus bipolar recordings, bipolar electrode spacing, postrecording processing, far field ventricular depolarizations, ventricular template subtraction, and signal duration on DF analysis. Simulated electrograms were used to evaluate the effect of far field ventricular depolarizations and signal‐to‐noise ratio. DFs were compared with activation rates obtained by manual marking and the reproducibility of the DFs was evaluated. Bipolar electrograms were found to be preferable to unipolar electrograms. Preprocessing was a necessary step for bipolar signals, but also aided analysis of unipolar recordings. Ventricular far field depolarizations significantly affected DFs. Ventricular template subtraction helped DF analysis in signals with both minimal and significant ventricular components. A recording duration above 2 seconds was required for reliable DF measurements. Signal‐to‐noise ratios below 13 dB could also affect DF, particularly for signals with significant amplitude and frequency variation. Conclusions: Various factors affect DF analysis. Proper interpretation of DF analysis requires careful evaluation of the AF signals and robust processing techniques.

Related Organizations
Keywords

Electrocardiography, Dogs, Fourier Analysis, Heart Conduction System, Atrial Fibrillation, Animals, Heart Atria

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!