Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cardiovas...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiovascular Electrophysiology
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bradycardia‐Mediated Ventricular Electrical Remodeling

Authors: Gil J, Gross;

Bradycardia‐Mediated Ventricular Electrical Remodeling

Abstract

Bradycardic states are associated with myocardial electrical remodeling predisposing to potentially lethal ventricular tachydysrhythmias. We used a novel model of complete heart block (CHB) in the rabbit to test the hypothesis that ventricular activation rate is the primary determinant of early bradycardic electrical remodeling. Chronic endocardial right ventricular demand (VVI) pacing was applied at either the near‐physiologic rate of 280 beats/min or at the bradycardic rate of 140 beats/min, beginning immediately after transcatheter radiofrequency AV node ablation. A third group of animals underwent sham ablation and served as non‐paced, normal sinus rhythm controls. The major finding of this study was that electrical remodeling was established within 8 days of CHB induction in the bradycardic animals, but was not observed in either of the other 2 groups. Bradycardic animals had significant QT interval prolongation and biventricular downregulation of the delayed rectifier K+ currents, IKr and IKs. The Ca2+‐independent transient outward K+ current, Ito, and the inwardly rectifying K+ current, IK1, were unaffected. This paper highlights these findings in the context of a literature‐based review of heart rate‐dependent remodeling of the mammalian myocardium, summarizing the current state of knowledge and describing future challenges.

Keywords

Ventricular Dysfunction, Left, Ventricular Remodeling, Heart Conduction System, Heart Rate, Heart Ventricles, Bradycardia, Action Potentials, Animals, Humans, Rabbits, Adaptation, Physiological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!