Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cardiovas...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiovascular Electrophysiology
Article . 1994 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Basic Aspects of Radiofrequency Catheter Ablation

Authors: S, Nath; J P, DiMarco; D E, Haines;

Basic Aspects of Radiofrequency Catheter Ablation

Abstract

RF Ablation. Radiofrequency (RF) catheter ablation has become the treatment of choice for many symptomatic cardiac arrhythmias. It is presumed that the primary cause of tissue injury by RF ablation is thermally mediated, resulting in a relatively discrete homogeneous lesion. The mechanism by which RF current heats tissue is resistive heating of a narrow rim (< 1 mm) of tissue that is in direct contact with the ablation electrode. Deeper tissue heating occurs as a result of passive heat conduction from this small region of volume heating. Lesion size is proportional to the temperature at the electrode‐tissue interface and the size of the ablation electrode. Temperatures above 50°C are required for irreversible myocardial injury, but temperatures above 100°C result in coagulum formation on the ablation electrode, a rapid rise in electrical impedance, and loss of effective tissue heating. Lesion formation is also dependent on optimal electrode‐tissue contact and duration of RF delivery. Newer developments in RF ablation include temperature monitoring, longer ablation electrodes coupled to high‐powered RF generators, and novel ablation electrode designs.

Related Organizations
Keywords

Postoperative Complications, Myocardium, Biophysics, Catheter Ablation, Humans, Thermodynamics, Arrhythmias, Cardiac, Biophysical Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    228
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
228
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!