<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 6268752
Abstract: The activity of the myelin‐associated enzyme 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase (CNP) was measured in 14 rat tissues and in subcellular fractions of rat liver by a sensitive fluorometric method, using cyclic NADP as substrate. CNP activity in brain (339 μmol/h/mg protein) was fourfold that of the sciatic nerve. The activities in tissues outside the nervous system ranged from a low of 0.42 μmol/h/mg protein in the unwashed red blood cell to a high of 9.96 in the spleen. The activity was highest in tissues containing cells with membranes capable of undergoing transformation and elaboration (spleen and thymus) and low in those in which the cell membranes are morphologically stable (muscle and red cell). The enzyme was found in all major liver subtractions, with the highest activities in the microsomal and nuclear fractions. Despite the large difference in the maximal velocities of CNP in brain and liver, the affinity of the liver enzyme for the substrate (km) was similar to that of brain enzyme. Brain CNP was stable over a 48‐h postmortem period.
Male, Phosphoric Diester Hydrolases, Brain, Sciatic Nerve, Rats, Kinetics, Mice, Liver, Animals, Tissue Distribution, 2',3'-Cyclic-Nucleotide Phosphodiesterases, Subcellular Fractions
Male, Phosphoric Diester Hydrolases, Brain, Sciatic Nerve, Rats, Kinetics, Mice, Liver, Animals, Tissue Distribution, 2',3'-Cyclic-Nucleotide Phosphodiesterases, Subcellular Fractions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |